Alternatives to Hot Water Treatment for Fruit Fly Control

Beth Mitcham University of California, Davis Elhadi Yahia University of Queretero, Mexico

Hot Water Protocol

- Blamed for many arrival problems
- Systems for heating well designed and managed
 - 107 facilities in Central and South America
- Fruit handling before and after should be improved

Potential Options – near term

- Hot water treatment
- Forced hot-air
- Irradiation
- Controlled atmosphere temperature treatment (CATTS)

Forced-Hot Air

- Commercial systems in use
 - Mexico
 - The Philippines
 - Hawaii
 - Cook's Island
- Research shows less fruit damage than hot water
- More difficult to map thermal variation at start of each season than for hot water
- Potential for failed treatments is higher at present in some facilities
- Engineering improvements to current systems

Forced-Hot Air

- Approved treatment for Mexico to ship to U.S.
 - Forced hot air to center temperature of 48°C, hold 2 min.
- Approved treatment for Hawaii to U.S. Mainland
 - Forced hot air to center temperature of 47.2C in greater than 4 hours
- Similar treatments for other parts of the world

Forced-Hot Air

- Gamma radiation source (cobalt-60), x-ray, electron beam
- Limited facilities on-line
 - Interest in further installations in many countries.
 - Two commercial installations exist in Mexico.

Irradiation

- Mango tolerance in general is better than many fruits
 - Upper limit of tolerance must be determined for each cultivar
 - Determines throughput and cost
- Tolerance varies by variety
- Affect of maturity at treatment must be clarified
 - Some cultivars are less tolerant when mature green
- 150 Grays minimum dose for Mexican fruit fly
- The higher the upper dose tolerance, the easier for operations and it may reduce cost

Irradiation – Fruit Tolerance

Variety	Maturity	Dose	Response
Keitt		0.6-0.9 kGy	No damage, sensory good
Tommy Atkins		>1 kGy	Flesh pitting and cell death, softening
Kent	Color break	1.5 to 3 kGy	softening

Irradiation – Fruit Tolerance

Variety	Maturity	Dose	Response
Haden	Mature Green	≥ 250 Gy	Skin scalding
	1⁄4- 3⁄4 Ripe	≤ 750 Gy	No Damage
	1⁄4 Ripe	≥ 750 Gy	Skin scald if treated after 6d at 12C
	⅓ Ripe	1 kGy	Skin scald if treated after 6d at 12C

CATTS

Controlled Atmosphere Temperature Treatment

- Controlled atmosphere with forced hot air
 - Nitrogen used to displace oxygen
 - Carbon dioxide added
 - Dual stress on fruit flies
 - Shorter treatment than hot air alone
 - Some commercial units available

CATTS

Controlled Atmosphere Temperature Treatment

- Treatments recently approved by APHIS for exports only
 - Apples: codling moth and oriental fruit moth
 - 12°C/h, 3h, chamber at 46°C with 1% O₂, 15% CO₂
 - Stone fruit: codling moth and oriental fruit moth
 - 12°C/h, 3h, chamber at 46°C with 1% O₂, 15% CO₂

CATTS Facility

CATTS Facility

CATTS Facility

Longer Term Solutions

- Microwave or radio frequency
- Fly Free Zone
- Systems Approach

Microwave or Radio Frequency

- Rapid heating of fruit
- Much shorter than hot water or hot air treatments
- Requires engineering of system to treat fruit in water
- Tolerance has not been thoroughly tested
 - one preliminary study with single fruits
- Uncertain if potential benefits warrant the investment in this technology

Fly Free Zone

- Pest management programs designed to keep pest populations below pest risk levels
- Allow certification of the product in the field based on regulatory requirements
- Trapping array is certified
- Survey data from traps activate various options
 - Continue certification
 - Withdraw certification
 - Initiate suppression measures to return compliance
- Depends on efficiency of trap survey to reliably indicate pest situation in the field

Fly Free Zone

- Common factors in certifying host fruit as originating from fly free areas
 - Geographic separation of production area from infested areas
 - Trapping system to verify absence of fly infestation
 - Maintenance of identify of fruit harvested from certified areas to prevent mixing with non-certified fruit

Fly Free Zone

- Certification criteria may include
 - Sterile fly releases
 - Prophylactic bait sprays
 - Preferred or alternate host removal
 - Utilization of trap crops
 - Inspection for larvae through fruit cutting or incubation procedures

Examples of Fly Free Zone

- Mexican fruit fly in Texas for citrus (1981)
 - Initial rationale
 - Low numbers of flies detected July to April when citrus became susceptible
 - Populations were further reduced with sterile fly releases
 - Limit to Northern distribution of fruit fly area
 - Limited alternative hosts in summer
 - Initial regulatory measures
 - Trap density of 5 per square mile in citrus
 - Limited fruit movement from these areas to specific months of the year (prior to January 1)
 - Suspend certification if 5 or more flies are found

Fly Free Zone in Texas

- Modified program based on concern from other states in U.S.
 - Cutting grapefruit to validate trap data
 - 30,000 before program implemented and 30,000 during first 30 days of program
 - Remove certification if ...
 - 1 larva or 1 gravid female found
 - 1 additional male or nongravid female found in 1.5 mile radius of original find or
 - More than 3 flies found in traps

Fly Free Zone in Texas

- Two to three more years of research to refine and validate plan
 - Year-round dispersal of sterile flies
 - Use of bail spray as needed
 - Use of McPhail traps for surveys

Integrate biological and operational factors to meet quarantine requirements

Quarantine Considerations

- None of the options are easy to achieve or apply
- The capital investment to move to a new treatment method is always significant, but it is important to invest in alternatives
- Fruit tolerance issues and the chances for fruit damage exist with all treatments
- One option that is strongly recommended is to improve the hot water protocol
 - Large investment in infrastructure
 - Heating portion is running well

Hot Water Treatment Facilities

Hydro-cooling Facilities

Hydro-cooling Procedures

- Most use intermittently or not at all
- Time after hot water
 - a few use 30 minute delay but most hydro-cool immediately if they do hydro-cool
- Length of hydro-cooling
 - 2 to 30 minutes
- Hydro-cooler Water Temperature
 - 21.1 to 31.7°C
- Center Pulp Temperature after Hydro-cooling
 36.7 to 42.2 °C
- Fruit often held 12 to 24 hours before packing

Close Stacking After Heat Treatment

Cool Fruit Before Shipment

Steps to Improve Hot Water Treatment

- 1. Do not treat immature fruit
- 2. Improve temperature control in hot water tank
- 3. Hydro-cool all fruit
 - a. To pulp temperature of 27°C (30 min⁺)
 - b. Maintain water at 21 to 22°C
 - c. Sanitize water appropriately
- 4. Pack ASAP after hydro-cooling
- 5. Provide overhead fans to keep fruit cooler during holding time with space between stacks
- 6. Pack fruit as soon as possible
- 7. Pre-cool fruit after packing with forced-air to 13-15°C
- 8. Pre-cool container before loading

Overall Recommendation

- Take steps to improve overall fruit handling and temperature management
- Implement consistent and improved hydro-cooling procedures
- •Explore other treatment options including irradiation, forced-hot air and CATTS (high temperature CA)

